metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yu-Hong Xue, Yu Liu and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 295 K Mean σ (C–C) = 0.002 Å R factor = 0.027 wR factor = 0.067 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[diaquabis(1*H*-benzimidazole- κN^3)cobalt(II)]- μ -succinato- κO]

The crystal structure of the title compound $[Co(C_4H_4O_4) (C_7H_6N_2)_2(H_2O)_2]_n$, consists of a polymeric Co^{II} complex bridged by a succinate dianion. Neighboring polymeric chains linked *via* hydrogen bonds. The overlapped arrangement and short separation of 3.365 (3) Å between parallel benz-imidazole rings suggest the existence of π - π stacking. The centrosymmetric complex has an octahedral coordination geometry.

Comment

 $\pi-\pi$ stacking between aromatic rings has been shown to be correlated with the electron-transfer process in some biological systems (Deisenhofer & Michel, 1989). As a part of an investigation of $\pi-\pi$ stacking in metal complexes (Chen *et al.*, 2003), the title polymeric Co^{II} complex, (I), has recently been prepared in our laboratory and its X-ray structure is presented here.

The title Co^{II} complex is isomorphous with the Ni^{II} complex reported recently (Liu *et al.*, 2003). The crystal structure consists of polymeric chains of the Co^{II} complex. The octahedral coordination environment around the Co^{II} atom, located on an inversion center, is illustrated in Fig. 1. The Co– O(water) bond [2.1404 (11) Å] is longer than the Co– O(carboxyl) bond [2.0898 (11) Å] (Table 1). The carboxyl group of the succinate is monodentate; the uncoordinated carboxyl atom O2 is hydrogen-bonded to the adjacent coordinated water and benzimidazole molecules, as shown in Fig. 1.

The succinate dianions bridge the Co^{II} atoms through both terminal carboxyl groups to form one-dimensional polymeric chains (Fig. 2). Adjacent chains are linked *via* N-H···O hydrogen bonds between benzimidazole and carboxyl groups and O-H···O hydrogen bonds between coordinated water molecules and carboxyl groups (Table 2). Fig. 2 also shows the overlapped arrangement of parallel benzimidazole groups from adjacent polymeric chains. Neighboring benzimidazole rings related by (-x, 1 - y, -z) are 3.365 (3) Å apart. These findings suggest the existence of π - π stacking between adjacent polymeric chains.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved Received 11 August 2003

Accepted 8 September 2003

Online 24 September 2003

Figure 1

The coordination environment around the Co^{II} atom in (I), with 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonding. [Symmetry codes: (i) -x, -y, 1 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) x, y, 1 + z; (iv) x - 1, y, z].

Figure 2

The molecular packing diagram, showing the π - π stacking between benzimidazole rings from neighboring polymeric chains. Dashed lines indicate hydrogen bonds.

Experimental

CoCl₂·6H₂O (0.48 g, 2 mmol) was added to an aqueous solution (10 ml) containing succinic acid (0.24 g, 2 mmol) and NaOH (0.16 g, 4 mmol). After the mixture was refluxed for 1 h, an ethanol solution (10 ml) of benzimidazole (0.24 g, 2 mmol) was added with continuous stirring. The solution was refluxed for 2 h, then was cooled to room temperature and filtered. Pink single crystals were obtained from the filtrate after 3 d.

Crystal data

$[Co(C_4H_4O_4)(C_7H_6N_2)_2H_2O_2]$	Z = 1
$M_r = 447.31$	$D_x = 1.628 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 7.0717 (9) Å	Cell parameters from 2067
b = 8.6326 (11) Å	reflections
c = 8.8223 (12) Å	$\theta = 2.5 - 25.0^{\circ}$
$\alpha = 100.699 \ (7)^{\circ}$	$\mu = 0.99 \text{ mm}^{-1}$
$\beta = 112.489 \ (9)^{\circ}$	T = 295 (2) K
$\gamma = 104.780~(6)^{\circ}$	Plate, pink
$V = 456.33 (11) \text{ Å}^3$	$0.28 \times 0.18 \times 0.06 \text{ mm}$

Data collection

Rigaku RAXIS-RAPID	2074 independent reflections 1051 reflections with $L > 2\sigma(I)$
	P = 0.015
w scalls	$\Lambda_{\rm int} = 0.015$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(ABSCOR; Higashi, 1995)	$h = -9 \rightarrow 9$
$T_{\min} = 0.756, T_{\max} = 0.940$	$k = -11 \rightarrow 11$
4322 measured reflections	$l = -11 \rightarrow 11$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.033P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.027$	+ 0.2062P]
$wR(F^2) = 0.067$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} = 0.001$
2074 reflections	$\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3}$
133 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Co-O1	2.0894 (11)	O2-C11	1.2695 (19)
Co-N3	2.1309 (13)	C11-C12	1.517 (2)
Co-O3	2.1407 (11)	$C12 - C12^{i}$	1.521 (3)
O1-C11	1.2568 (18)		
O1-Co-N3	91.30 (5)	N3-Co-O3	86.21 (5)
O1-Co-O3	90.50 (4)		. ,

Symmetry code: (i) -x, -y, 1-z.

Table 2	
Hydrogen-bonding geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H32···O2 ⁱⁱ	0.87	1.85	2.7020 (18)	167
$N1 - H1 \cdots O2^{v}$	0.86	2.07	2.8775 (19)	157
$O3-H31\cdots O2^{vi}$	0.89	2.00	2.860 (2)	160

Symmetry codes: (ii) 1 - x, 1 - y, 1 - z; (v) x, y, z - 1; (vi) 1 + x, y, z.

H atoms of water molecules were located in a difference Fourier map and included in the structure-factor calculation, with fixed coordinates and isotropic displacement parameters of 0.05 Å². Other H atoms were placed in calculated positions, with C-H = 0.93 Å (benzimidazole) or 0.97 Å (succinate) and N-H = 0.86 Å, and included in the final cycles of refinement in a riding model, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}$ of the carrier atoms.

Data collection: PROCESS-AUTO (Rigaku Corporation, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku Corporation, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (29973036 and 20240430654).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Chen, Z., Xu, D.-J., Li, Z.-Y., Wu, J.-Y. & Chiang, M. Y. (2003). J. Coord. Chem. 56. 253-259.
- Deisenhofer, J. & Michel, H. (1989). EMBO. J. 8, 2149-2170. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Liu, Y., Gu, J.-M. & Xu, D.-J. (2003). Acta Cryst. E59, m330-m332.

Rigaku Corporation (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

- Rigaku/MSC & Rigaku Corporation. (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, TX, USA 77381-5209. Rigaku, Akishima, Tokyo, Japan.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.