Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yu-Hong Xue, Yu Liu and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.027$
$w R$ factor $=0.067$
Data-to-parameter ratio $=15.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[diaquabis(1H-benzimidazole- $\kappa \mathrm{N}^{3}$)-cobalt(II)]- μ-succinato-кO]

The crystal structure of the title compound $\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)\right.$ $\left.\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, consists of a polymeric $\mathrm{Co}^{\mathrm{II}}$ complex bridged by a succinate dianion. Neighboring polymeric chains linked via hydrogen bonds. The overlapped arrangement and short separation of 3.365 (3) \AA between parallel benzimidazole rings suggest the existence of $\pi-\pi$ stacking. The centrosymmetric complex has an octahedral coordination geometry.

Comment

$\pi-\pi$ stacking between aromatic rings has been shown to be correlated with the electron-transfer process in some biological systems (Deisenhofer \& Michel, 1989). As a part of an investigation of $\pi-\pi$ stacking in metal complexes (Chen et al., 2003), the title polymeric $\mathrm{Co}^{\mathrm{II}}$ complex, (I), has recently been prepared in our laboratory and its X-ray structure is presented here.

The title $\mathrm{Co}^{\text {II }}$ complex is isomorphous with the $\mathrm{Ni}^{\mathrm{II}}$ complex reported recently (Liu et al., 2003). The crystal structure consists of polymeric chains of the $\mathrm{Co}^{\mathrm{II}}$ complex. The octahedral coordination environment around the $\mathrm{Co}^{\mathrm{II}}$ atom, located on an inversion center, is illustrated in Fig. 1. The CoO (water) bond $[2.1404(11) \AA]$ is longer than the Co O (carboxyl) bond [2.0898 (11) Å] (Table 1). The carboxyl group of the succinate is monodentate; the uncoordinated carboxyl atom O 2 is hydrogen-bonded to the adjacent coordinated water and benzimidazole molecules, as shown in Fig. 1.

The succinate dianions bridge the $\mathrm{Co}^{\mathrm{II}}$ atoms through both terminal carboxyl groups to form one-dimensional polymeric chains (Fig. 2). Adjacent chains are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between benzimidazole and carboxyl groups and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between coordinated water molecules and carboxyl groups (Table 2). Fig. 2 also shows the overlapped arrangement of parallel benzimidazole groups from adjacent polymeric chains. Neighboring benzimidazole rings related by $(-x, 1-y,-z)$ are 3.365 (3) A apart. These findings suggest the existence of $\pi-\pi$ stacking between adjacent polymeric chains.

Received 11 August 2003
Accepted 8 September 2003
Online 24 September 2003

Figure 1
The coordination environment around the $\mathrm{Co}^{\mathrm{II}}$ atom in (I), with 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonding. [Symmetry codes: (i) $-x,-y, 1-z$; (ii) $1-x, 1-y, 1-z$; (iii) $x, y, 1+z$; (iv) $x-1, y, z]$.

Figure 2
The molecular packing diagram, showing the $\pi-\pi$ stacking between benzimidazole rings from neighboring polymeric chains. Dashed lines indicate hydrogen bonds.

Experimental

$\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.48 \mathrm{~g}, 2 \mathrm{mmol})$ was added to an aqueous solution $(10 \mathrm{ml})$ containing succinic acid $(0.24 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{NaOH}(0.16 \mathrm{~g}$, 4 mmol). After the mixture was refluxed for 1 h , an ethanol solution $(10 \mathrm{ml})$ of benzimidazole $(0.24 \mathrm{~g}, 2 \mathrm{mmol})$ was added with continuous stirring. The solution was refluxed for 2 h , then was cooled to room temperature and filtered. Pink single crystals were obtained from the filtrate after 3 d .

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2} \mathrm{H}_{2} \mathrm{O}_{2}\right]$	$Z=1$
$M_{r}=447.31$	$D_{x}=1.628 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=7.0717(9) \AA$	Cell parameters from 2067
$b=8.6326(11) \AA$	reflections
$c=8.8223(12) \AA$	$\theta=2.5-25.0^{\circ}$
$\alpha=100.699(7)^{\circ}$	$\mu=0.99 \mathrm{~mm}^{\circ}$
$\beta=112.489(9)^{\circ}$	$T=295(2) \mathrm{K}$
$\gamma=104.780(6)^{\circ}$	Plate, pink
$V=456.33(11) \AA^{\circ}$	$0.28 \times 0.18 \times 0.06 \mathrm{~mm}$

Data collection

Rigaku RAXIS-RAPID diffractometer

ω scans

Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.756, T_{\text {max }}=0.940$
4322 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.033 P)^{2}\right. \\
& \quad+0.2062 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.28 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Co}-\mathrm{O} 1$	$2.0894(11)$	$\mathrm{O} 2-\mathrm{C} 11$	$1.2695(19)$
$\mathrm{Co}-\mathrm{N} 3$	$2.1309(13)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.517(2)$
$\mathrm{C}-\mathrm{O} 3$	$2.1407(11)$	$\mathrm{C} 12-\mathrm{C} 12^{\mathrm{i}}$	$1.521(3)$
$\mathrm{O} 1-\mathrm{C} 11$	$1.2568(18)$		
$\mathrm{O} 1-\mathrm{Co}-\mathrm{N} 3$	$91.30(5)$	$\mathrm{N} 3-\mathrm{Co}-\mathrm{O} 3$	$86.21(5)$
$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 3$	$90.50(4)$		

Symmetry code: (i) $-x,-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 32 \cdots \mathrm{O}^{\mathrm{ii}}$	0.87	1.85	$2.7020(18)$	167
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{v}}$	0.86	2.07	$2.8775(19)$	157
$\mathrm{O}^{\mathrm{O}}-\mathrm{H} 31 \cdots \mathrm{O}^{\text {vi }}$	0.89	2.00	$2.860(2)$	160

Symmetry codes: (ii) $1-x, 1-y, 1-z$; (v) $x, y, z-1$; (vi) $1+x, y, z$.
H atoms of water molecules were located in a difference Fourier map and included in the structure-factor calculation, with fixed coordinates and isotropic displacement parameters of $0.05 \AA^{2}$. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (benzimidazole) or $0.97 \AA$ (succinate) and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and included in the final cycles of refinement in a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the carrier atoms.

Data collection: PROCESS-AUTO (Rigaku Corporation, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku Corporation, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (29973036 and 20240430654).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Chen, Z., Xu, D.-J., Li, Z.-Y., Wu, J.-Y. \& Chiang, M. Y. (2003). J. Coord. Chem. 56, 253-259.
Deisenhofer, J. \& Michel, H. (1989). EMBO. J. 8, 2149-2170.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

metal-organic papers

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Liu, Y., Gu, J.-M. \& Xu, D.-J. (2003). Acta Cryst. E59, m330-m332.
Rigaku Corporation (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC \& Rigaku Corporation. (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, TX, USA 77381-5209. Rigaku, Akishima, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

